Identifikasi Kematangan Buah Menggunakan Teknik Deep Learning
Main Article Content
Abstract
Banyak studi penelitian terkini telah mengeksplorasi penerapan teknik deep learning untuk deteksi, identifikasi, segmentasi, dan klasifikasi buah. Dengan penggunaan arsitektur model deep learning, seperti Convolutional Neural Networks (CNNs), dan strategi data augmentation, transfer learning dan ensemble learning, sistem dapat mengenali kematangan buah secara otomatis dengan akurasi yang tinggi. Mekanisme untuk mengidentifikasi kematangan buah dengan akurasi yang tinggi dapat dilakukan dengan pemilihan model pre-trained yang sesuai, penyesuaian lapisan teratas, pelatihan dengan learning rate yang sesuai, penerapan augmentasi data, fine-tuning, evaluasi, dan penyetelan parameter. Penelitian ini bertujuan untuk memberikan penjelasan tentang identifikasi kematangan buah melalui pendekatan data augmentation, transfer learning, dan ensemble learning dengan berfokus pada bagian-bagian seperti review penelitian, dataset, model pre-trained, dan akurasi.
Downloads
Article Details
References
G. Vrban?i? and V. Podgorelec, “Transfer learning with adaptive fine-tuning,” IEEE Access, vol. 8, no. December, pp. 196197–196211, 2020, doi: 10.1109/ACCESS.2020.3034343.
S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning,” Arch. Comput. Methods Eng., vol. 27, no. 4, pp. 1071–1092, 2020, doi: 10.1007/s11831-019-09344-w.
wang xuemei, “Fruit classification method based on deep learning,” pp. 1–6, 2022, doi: 10.4108/eai.20-12-2021.2315013.
Y. Hendrawan et al., “Classification of large green chilli maturity using deep learning,” IOP Conf. Ser. Earth Environ. Sci., vol. 924, no. 1, 2021, doi: 10.1088/1755-1315/924/1/012009.
M. H. M. Noor and A. O. Ige, A Survey on Deep Learning and State-of-the-arts Applications, vol. 3270. 2024.
Y. I. Sulistya, E. T. Br Bangun, and D. A. Tyas, “CNN Ensemble Learning Method for Transfer learning: A Review,” Ilk. J. Ilm., vol. 15, no. 1, pp. 45–63, 2023, doi: 10.33096/ilkom.v15i1.1541.45-63.
T. B. Shahi, C. Sitaula, A. Neupane, and W. Guo, “Fruit classification using attention-based MobileNetV2 for industrial applications,” PLoS One, vol. 17, no. 2 February, pp. 1–21, 2022, doi: 10.1371/journal.pone.0264586.
N. Aherwadi, U. Mittal, J. Singla, N. Z. Jhanjhi, A. Yassine, and M. S. Hossain, “Prediction of Fruit Maturity, Quality, and Its Life Using Deep Learning Algorithms,” Electron., vol. 11, no. 24, 2022, doi: 10.3390/electronics11244100.
N. Begum and M. K. Hazarika, “Maturity detection of tomatoes using transfer learning,” Meas. Food, vol. 7, no. March, p. 100038, 2022, doi: 10.1016/j.meafoo.2022.100038.
V. Bhole and A. Kumar, “Mango Quality Grading using Deep Learning Technique: Perspectives from Agriculture and Food Industry,” SIGITE 2020 - Proc. 21st Annu. Conf. Inf. Technol. Educ.,
no. October, pp. 180–186, 2020, doi: 10.1145/3368308.3415370.
S. H. Miraei Ashtiani, S. Javanmardi, M. Jahanbanifard, A. Martynenko, and F. J. Verbeek, “Detection of mulberry ripeness stages using deep learning models,” IEEE Access, vol. 9, pp. 100380–100394, 2021, doi: 10.1109/ACCESS.2021.3096550.
S. Y. Kim, S. J. Hong, E. Kim, C. H. Lee, and G. Kim, “Application of ensemble neural-network method to integrated sugar content prediction model for citrus fruit using Vis/NIR spectroscopy.,” J. Food Eng., vol. 338, 2023, doi: 10.1016/j.jfoodeng.2022.111254.
K. Kayaalp, “A deep ensemble learning method for cherry classification,” Eur. Food Res. Technol., vol. 250, no. 5, pp. 1513–1528, 2024, doi: 10.1007/s00217-024-04490-3.
M. Rodriguez, F. Pastor, and W. Ugarte, “Classification of fruit ripeness grades using a convolutional neural network and data augmentation,” Conf. Open Innov. Assoc. Fruct, vol. 2021-Janua, 2021, doi: 10.23919/FRUCT50888.2021.9347597.
V. Bhole and A. Kumar, “A transfer learning-based approach to predict the shelf life of fruit,”
Intel. Artif., vol. 24, no. 67, pp. 102–120, 2021, doi: 10.4114/intartif.vol24iss67pp102-120.
M. Fakhriansyah, L. D. Fathimahhayti, and S. Gunawan, “Klasifikasi Tingkat Kematangan Buah Nanas Menggunakan Metode Deep Learning” G-Tech J. Teknol. Terap., vol. 6, no. 2, pp. 295– 305, 2022, [Online]. Available: https://ejournal.uniramalang.ac.id/index.php/g- tech/article/view/1823/1229.